Cross validation logic used by LightGBM
lgb.cv(params = list(), data, nrounds = 10, nfold = 3, label = NULL, weight = NULL, obj = NULL, eval = NULL, verbose = 1, record = TRUE, eval_freq = 1L, showsd = TRUE, stratified = TRUE, folds = NULL, init_model = NULL, colnames = NULL, categorical_feature = NULL, early_stopping_rounds = NULL, callbacks = list(), reset_data = FALSE, ...)
params | List of parameters |
---|---|
data | a |
nrounds | number of training rounds |
nfold | the original dataset is randomly partitioned into |
label | vector of response values. Should be provided only when data is an R-matrix. |
weight | vector of response values. If not NULL, will set to dataset |
obj | objective function, can be character or custom objective function. Examples include
|
eval | evaluation function, can be (list of) character or custom eval function |
verbose | verbosity for output, if <= 0, also will disable the print of evaluation during training |
record | Boolean, TRUE will record iteration message to |
eval_freq | evaluation output frequency, only effect when verbose > 0 |
showsd |
|
stratified | a |
folds |
|
init_model | path of model file of |
colnames | feature names, if not null, will use this to overwrite the names in dataset |
categorical_feature | list of str or int type int represents index, type str represents feature names |
early_stopping_rounds | int Activates early stopping. Requires at least one validation data and one metric If there's more than one, will check all of them except the training data Returns the model with (best_iter + early_stopping_rounds) If early stopping occurs, the model will have 'best_iter' field |
callbacks | list of callback functions List of callback functions that are applied at each iteration. |
reset_data | Boolean, setting it to TRUE (not the default value) will transform the booster model into a predictor model which frees up memory and the original datasets |
... | other parameters, see Parameters.rst for more information. A few key parameters:
|
a trained model lgb.CVBooster
.
library(lightgbm) data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) params <- list(objective = "regression", metric = "l2") model <- lgb.cv(params, dtrain, 10, nfold = 5, min_data = 1, learning_rate = 1, early_stopping_rounds = 10)#> [1]: valid's l2:0.000460829+0.000921659 #> [2]: valid's l2:0.000460829+0.000921659 #> [3]: valid's l2:0.000460829+0.000921659 #> [4]: valid's l2:0.000460829+0.000921659 #> [5]: valid's l2:0.000460829+0.000921659 #> [6]: valid's l2:0.000460829+0.000921659 #> [7]: valid's l2:0.000460829+0.000921659 #> [8]: valid's l2:0.000460829+0.000921659 #> [9]: valid's l2:0.000460829+0.000921659 #> [10]: valid's l2:0.000460829+0.000921659